Pismeni zadaci

Zadatak 0026

Test: MPsIVKVII_005

 

Data je funkcija \(f(x)=e^{x} \sin x\). Dokazati da je \(f''(x)-2f'(x)+2f(x)=0\).

 

Rešenje:


 

\(f'(x)=e^{x} \sin x+e^{x} \cos x\); 

 

\(f''(x)=e^{x} \sin x+e^{x} \cos x+e^{x} \cos x - \sin x e^{x} = 2e^{x} \cos x\).

 

\(f''(x)-2f'(x)+2f(x)\) \(=2e^{x} \cos x- 2e^{x} \sin x-2e^{x} \cos x+2e^{x} \sin x=0\).


 

Vi ste ovde: Home Zbirke zadataka Srednja Za IV razred Funkcije Izvod funkcije Zadatak 0026